
Theoret. chim. Acta (Bed.) 22, 167--175 (1971) 
�9 by Springer-Verlag 1971 

Use of the Mixed Basis Method for ab initio 
SCF MO Calculations 

D. B. COOK, P. D. DACRE, J. L. DODDS, and M. ELDER 
Department of Chemistry, The University, Sheffield S 3 7 HF, England 

Received November 26, 1970 

A previously described mixed basis method for performing SCF MO calculations has been applied 
to the benzene molecule and to the allyl cation. A basis set of Slater type orbitals is used to calculate 
the one-electron and one-centre two-electron integrals whilst the many-centre two-electron integrals 
are approximated by small gaussian type orbital expansions of the STO basis. Comparison of the 
results with all-gaussian basis sets and literature values indicates that the mixed basis 2-GTO ap- 
proximation is inadequate for molecules of this size because of the consistent underestimation of 
the electron repulsion integrals. The use of gaussian exponents chosen by a least-squares procedur e 
rather than variationally gives better mixed basis results, but the indications are that a 4-GTO ex- 
pansion is necessary for reliable mixed basis calculations. A method for more accurate integral 
evaluation by gaussian expansions of orbital products is suggested. 

Eine friiher beschriebene Methode mit gemischter Basis zur Durchftihrung yon SCF-MO- 
Berechnungen wurde auf das Benzolmolekiil sowie das Allylkation angewendet. Ein Basissatz aus 
Slaterorbitalen wird verwendet, um die Einelektronen- und die Einzentrenzweielektronenintegrale 
zu berechnen, w~ihrend die Mehrzentrenzweielektronenintegrale mit Hilfe yon Entwicklungen der 
Slaterorbitale nach wenigen GauBfunktionen angen~ihert werden. Ein Vergleich mit Ergebnissen von 
Rechnungen mit Gesamtbasissiitzen von GauBfunktionen und mit Literaturwerten zeigt, dab der 
gemischte Basissatz 2-GTO ungeeignet fiir Molekiile yon dieser GrSBe ist, da die ElektronenabstoBungs- 
integrale durchgehend zu klein berechnet werden. Die Verwendung yon Exponenten der GauB- 
funktion, die mit Hilfe einer Methode der kleinsten Quadrate gewonnen wurde, ergibt bei der gemischten 
Basis bessere Ergebnisse als diejenigen, die nach der Variationsmethode gewonnen wurden; es zeigt 
sich jedoch, dab 4-GTO-Entwicklungen ftir angemessene Berechnungen mit gemischter Basis not- 
wendig werden. Eine Methode fiir eine genauere Integralberechnung mit Hilfe der Entwicklung von 
Orbitalprodukten nach GauSfunktionen wird vorgeschlagen. 

Application/t la mol6cule de benz6ne d'une m6thode de base mixte pr6c6demment d6crite pour 
effectuer les calculs SCF MO. Une base d'orbitales de Slater est utilis6e pour calculer les int6grales 
mono61ectroniques et les int6grales bi61ectroniques monocentriques; les int6grales bi61ectroniques 
polycentriques sont approch6es au moyen d'une expression des orbitales de Slater en orbitales gaus- 
siennes. La comparaison des r6sultats avec ceux obtenus en bases gaussiennes et avec ceux donn6s dans 
la litt6rature indique que l'approximation 2-GTO n'est pas adapt6e aux mol6cules de cette taille car 
elle provoque une sous-estimation constante des int6grales de r6pulsion 61ectronique. L'emploi 
d'exposants gaussiens choisis par un proe6d6 de moindres carr6s plut6t que par une m6thode variation- 
nelle donne de meilleurs r6sultats en bases mixtes mais il s'av6re n6cessaire d'utiliser un d6veloppement 
du type 4-GTO. On propose une m6thode pour l'6valuation plus pr6cise des int6grales par d6veloppe- 
ment gaussien des produits d'orbitales. 

Introduction 

I n  t h e  c o u r s e  o f  s o m e  ab initio S C F  M O  c a l c u l a t i o n s  o n  a n u m b e r  o f  s m a l l  

m o l e c u l e s  w e  e m p l o y e d  t h e  " m i x e d "  b a s i s  m e t h o d  f i rs t  f o r m u l a t e d  b y  C o o k  a n d  

P a l m i e r i  [13. T h e  r e s u l t s  o f  t h e s e  c a l c u l a t i o n s ,  w h i c h  u t i l i z e d  s m a l l  g a u s s i a n  
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type orbital (GTO) expansions, were less satisfactory than might have been 
expectedj udged from the success of the method in its trial applications to CH4, H2 O, 
and HiS. A comparison of the results with parallel all gaussian calculations using 
the same GTO basis sets revealed a major defficiency in the mixed basis method 
when small (2-GTO) basis sets were employed for the calculation of the electron 
repulsion integrals in molecules somewhat larger than methane. 

As originally described the mixed basis method uses a Slater type orbital 
(STO) basis for the calculation of the one-electron Hamiltonian and the coulomb- 
type integrals. The remaining two-electron integrals are computed over a small 
GTO expansion of the STO basis set. In this way the advantages of using GTO's 
for the time-consuming calculation of the electron repulsion integrals are main- 
tained whilst the errors introduced into the calculation of the one-electron 
Hamiltonian by the inaccuracy of small GTO expansions of Slater orbitals in 
the region near the nucleus are avoided. A more extreme approach [2], in which 
one-electron integrals were calculated accurately but the two-electron integrals 
(over orthogonalized orbitals) were approximated using a modified zero-differential 
overlap approximation, also showed some promise. Clearly such methods depend 
for their validity on the accuracy with which electron repulsion effects may be 
estimated using approximate integrals. 

In the first mixed-basis calculations [1] satisfactory results were obtained 
with a 2-GTO expansion. Similar results have also been reported by Brown et  al. 

for water and methane [3]. In the present work we apply the method to somewhat 
larger systems, the benzene molecule and the allyl cation. 

Calculations 

SCF MO calculations on the ground states of the benzene molecule and the 
allyl cation have been carried out using a variety of basis sets. For benzene the 
two and three gaussian type orbital expansions of Huzinaga [4], with orbital 
exponents chosen by variational methods, were scaled to fit minimal basis Slater 
type orbitals with best-atom exponents from Clementi and Raimondi [5] except 
for the hydrogen ls orbital where an exponent of 1.2 was used. In order to test 
the different effects of using GTO expansions fitted by variational or least- 
squares methods the 2-GTO expansions of Stewart [-6] were also scaled to fit 
the same STO exponents. Although GTO expansions chosen by least-squares 
methods are not optimum for energies they should be more accurate descriptions 
of the atomic orbitals in the regions distant from the nucleus than GTO's with 
variationally-chosen exponents. 

Two SCF calculations were performed for each of these three gaussian basis 
sets. In the first, all one- and two-electron Hamiltonian elements were computed 
using the GTO basis. 

Total energies, one-electron orbital energies and population analyses are 
reported in Table 1. Columns (a), (c) and (e) give the results for 2- and 3-GTO 
(variational) and 2-GTO (least-squares) respectively. These may be compared 
with the second set of calculations for which a mixed basis set was employed. 
Here the GTO expansions were used for the many-centre two-electron integrals 
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Tab le  2. A comparison of orbital and total ener#ies and population analyses for the various C a l l  + 

calculations 

( a )  ( b )  ( e )  ( d )  ( e )  

2 - G T O  3 - G T O  4 - G T O  4 - G T O  PB [10] 
(Mixed basis) (Mixed basis) (Mixed basis) 

- 1 1 . 9 4 0  l a  1 - 1 1 . 7 7 0  

- 1 1 . 9 0 4  2a I - 11.770 

- 1 1 . 9 0 3  lb  2 - 1 1 . 7 0 9  

- 1.757 3a 1 - 1.432 

- 1.356 2b 2 - 1.263 

- 1.220 3b 2 - 1.095 

- 1.180 4a  1 - 0.983 

- 1.158 5a 1 - 0.958 

- 1.001 4b2 - 0.926 

- 0.994 lbl (~)  - 0.856 

- 0.937 6a 1 - 0.762 

- 0.586 7a 1 - 0.326 

- 0.391 la2(~  ) - 0.089 

To ta l  ene rgy  

-116.9013 

A t o m  popula t ions  a 

C1 6.00 6.31 

C 2 6.30 6.26 

H i  0.67 0.66 

H2 0.70 0.65 

H 3 0.67 0.61 

Bond  popu la t ions  

C 1 - C  2 - 0 . 9 5  1.01 

H 1 - C  i - 0 . 0 4  0.83 

H 2 - C  2 0.61 0.78 

H 3 - C  3 0.31 0.76 

lb  2 - 1 1 . 7 8 0  l a  1 - 1 1 . 7 4 3  l a  1 - 1 1 . 5 5 1  l a  1 

l a  i - 1 1 . 7 8 0  lb  2 - 1 1 . 7 4 3  lb  2 - 1 1 . 5 5 1  lb  2 

2a i - 1 1 . 7 1 1  2a 1 - 1 1 . 6 6 9  2a 1 - 1 1 . 4 7 3  2a 1 

3a 1 - 1.426 3a 1 - 1.424 3a 1 - 1.393 3a 1 

2b 2 - 1.257 2b 2 - 1.252 2b 2 - 1.201 2b 2 

4a  1 - 1.098 4a  1 - 1.082 4a  1 - 1.024 4a 1 

5a 1 - 0.995 5a 1 - 0.995 5a i - 0.950 5a 1 

3b 2 - 0.950 3b 2 - 0.957 3b2 - 0.894 3b 2 

4b 2 - 0.884 4b 2 - 0.894 4b 2 - 0.812 4b 2 

6a 1 - 0.852 6a i - 0.855 6a 1 - 0.771 6a i 
lb l (n)  - 0.750 l b l (~  ) - 0.755 lb i (n  ) - 0.683 l b l (n  ) 

l a 2 ( z  ) - 0.324 l a  2 - 0.327 la2(n  ) - 0.226 la2(n  ) 

2b i (n  ) - 0.098 2bl(n) - 0.097 2bl(n ) - 0.022 2b l (n  ) 

- 1 1 5 . 9 2 2 1  - 1 1 5 . 8 0 3 1  - 1 1 5 . 3 1 8 9  - 1 1 6 . 1 3 0 0  

6.29 6.27 

6.24 6.18 

0.67 0.70 

0.65 0.68 

0.63 0.65 

1.01 1.02 

0.84 0.85 

0.79 0.81 

0.77 0.79 

a A t o m s  C1 and  H i  lie on  the 2-fold axis. H 2 is cis to H i .  

only. All one-centre one- and two-electron terms were calculated using the STO 
orbitals. The remaining many-centre one-electron elements were computed with 
a 1-666/6] GTO expansion taken from Huzinaga I-7] in order to obtain close 
approximations to the exact values in a computationally convenient manner. 
The results are given in columns (b), (d) and (f) of Table 1. For comparison purposes 
column (g) contains the results obtained by Schulman and Moskowitz (SM) I-8] 
using a large GTO basis set, which they consider to give results at least equal 
to those corresponding to a minimal Slater basis. The equilibrium ground state 
g e o m e t r y ,  D6h symmetry with C-C = 1.397/~ and C-H = 1.084/~, was employed. 

For the allyl ion a basis of SCF orbitats for carbon taken from Clementi's 
tabulation of linear combinations of STO's 1-9] was used together with a hydrogen 
ls exponent of 1.0. Columns (a), (b) and (c) of Table 2 give the results of mixed 
basis calculations using 2-, 3- and 4-GTO fits to these SCF functions for the 
computation of the many-centre two-electron integrals together with the exact 
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values for all one-centre terms and values determined from a 1-666/6] GTO 
expansion for the remaining one-electron terms. Column (d) gives the corre- 
sponding results obtained by using the 4-GTO expansion for all the Hamiltonian 
matrix terms. The gaussian lobe function calculation of Peyerimhoff and Buenker 
(PB) [10] on CaH~ is given in column (e) of Table 2 for comparison purposes. 
The use of optimized hydrogen ls exponents and a slightly different geometry in 
this calculation prevents any direct comparison of total energies but the ordering 
of the one-electron energy levels should be unchanged. The ion was assumed to 
have C2v symmetry with C-C 1.40/~, C - H  1.08/~ and the angle ~ CCC 118.5 ~ 

Results and Discussion 

The three all-gaussian basis set calculations for benzene exhibit the same 
sequence of energy levels, and the only differences from the SM ordering lie in 
the arrangement of the nearly degenerate carbon inner-shell orbitals. The 3-GTO 
(variationally chosen) basis set total energy is within 2 a.u. of the SM value, and 
5.0 a.u. below the 2-GTO (variational) value. The 2-GTO expansion with ex- 
ponents determined by a least-squares procedure does not give as low a total 
energy as the 2-GTO (variational) basis set, as noted by Klessinger for CH 4 
and H20  [12]. The main difference between the 2-GTO calculations lies in the 
one-electron orbital energies. The variationally determined basis set gives lower 
energies for the core electrons but slightly higher energies for the valence electrons. 

Brown et al. 1-3] in their mixed basis calculations on small molecules point 
out that the variation theorem does not apply to a calculation in which some 
of the integrals are approximated. They observe that in some cases a total energy 
slightly lower than the exact resulted from their mixed basis calculations, and 
this is consistent with slight underestimation of multicentre electrons repulsion 
integrals. For the larger benzene molecule it is clear that the approximations 
involved in using a small GTO basis set for these integrals lead to very poor 
results. The 2-GTO (V) mixed basis calculation has a total energy about 9 a.u. 
below the estimated value for a minimal Slater basis. The underestimation of 
electron repulsion integrals has lowered all the one-electron orbital energies and 
altered their ordering. Those levels which are completely determined by symmetry 
are most affected. The az. and e2,-orbitals are lowered and raised in energy 
respectively whilst the a2g antibonding orbital is now occupied, at the expense 
of the bonding b2, orbital. The atomic population values are consistent with a 
build up of electron density close to the carbon nuclei, which, combined with 
the occupation of an antibonding orbital, gives chemically nonsensical results 
from a Mulliken population analysis. The 2-GTO (LS) calculation is better as 
far as energy is concerned, the total energy being only 2 a.u. below the estimated 
minimal Slater basis value. The deviations from the SM energy level ordering 
are still considerable however. The 2bl. and 3alo levels are interchanged, the 
a2,(n ) and 3e20 levels are lowered in energy, and the elo(n ) level is now unoccupied 
although it still has a negative energy. The atomic population results are better 
than those for the 2-GTO (V) calculation, but the bond population figures are 
still meaningless. 
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Table 3. Comparison of  values for  some two-electron integrals for benzene. Orbitals are p~ on carbon 
atoms 1 to 6. C-C=2.632075 bohr, ~= 1.590 

(a) (b) (c) (d) (e) (~ 
Exact [11] 3-GTO(LS) 2-GTO(LS) 3-GTO(V) 2-GTO(V) n-GTO(CD) a 

(21/11) 0 .121755 0 .121696  0 .122062  0 .121222 0 .117650 0.121834 
(31/11) 0 .013891 0 .013531 0 .011196  0 .011640 0 .007912 0.013879 
(41/11) 0 .005796  0 .005294  0 .003755 0 .004070 0 .002233 0.005802 

(32/11) 0 .068193 0 .068165  0 .067891 0 .067468 0 .064268 0.068201 
(43/11) 0 .051664  0 .051634  0 .051426  0 .051088 0 .048653 0.051687 
(62/11) 0 .016131 0 .015874  0 .013795 0 .014117 0 .010129 0.016122 
(42/11) 0 .010001 0 .009721 0 .008065  0 .008365 0 .005680 0.009994 
(53/11) 0 .008846  0 .008621  0 .007202  0 .007452 0 .005082 0.008841 
(52/11) 0 .005416  0 .005033  0 .003684  0 .003954 0 .002217 0.005419 

(21/21) 0 .034091 0 .034053  0 .034237  0 .033784 0 .032136 0.034149 
(31/31) 0 .000633 0 .000612  0 .000456  0 .000477 0 .000244 0.000632 
(41/41) 0 .000124  0 .000109  0 .000063  0 .000070 0 .000024 0.000124 

(61/21) 0 .023927 0 .023914  0 .023866 0 .023521 0 .021562 0.023945 
(31/21) 0 .004112  0 .004035  0 .003453 0 .003526 0 .002399 0.004112 
(51/21) 0 .003174  0 .003087  0 .002556  0 .002634 0 .001712 0.003174 
(41/21) 0 .001535 0 .001417  0 .001026  0 .001097 0 .000586 0.001537 
(51/31) 0 .000481 0 .000459  0 .000326  0 .000348 0 .000165 0.000480 
(41/31) 0 .000252  0 .000232  0 .000148 0 .000162 0 .000066 0.000252 

(43/21) 0 .015663 0 .015646  0 .015522  0 .015316 0.013881 0.015673 
(54/21) 0 .013740  0 .013724  0 .013618  0 .013433 0 ,012179 0.013754 
(53/21) 0 .002517  0 .002451 0 .002042  0 .002098 0 .001365 0.002516 
(63/21) 0 .001465 0 .001369  0 .001013  0 .001075 0 .000583 0.001467 
(42/31) 0 .000578 0 .000556  0 .000405 0 .000429 0 .000211 0.000577 
(64/31) 0 .000437  0 .000417  0 .000297  0 .000316 0 ,000150 0.000436 
(52/31) 0 .000255  0 .000234  0 .000149 0 .000163 0 .000066 0.000255 
(52/41) 0 .000122  0 .000108  0 .000062  0 .000070 0 .000024 0.000122 

a See text for a description of the method. Expansions of 6, 8, 9, 8 functions were used for the 
products (1,1), (1,2), (1,3), and (1,4) respectively. The other orbital products required were obtained 
by symmetry. 

The  3 - G T O  (V) mixed  basis  ca lcu la t ion  is no t  so b a d l y  affected by  the in tegra l  
app rox ima t ions .  The  to ta l  energy is cons ide rab ly  higher  than  the 2 - G T O  (V) 
value,  t h o u g h  still  lower  than  the a l l -gauss ian  3 - G T O  value. The  o rde r ing  of  
energy levels shows only  two s y m m e t r y - d e t e r m i n e d  molecu la r  o rb i ta l s  to have 
been  misp l aced  - the  a2u level is lowered  in energy whils t  the  b2u level is raised,  
t hough  no t  to  the  same extent  as in the 2 - G T O  (V) mixed  basis  calculat ion.  

In  Tab le  3 we t abu la t e  the  resul ts  for the  va r ious  G T O  a p p r o x i m a t i o n s  to  
some accura te ly  k n o w n  two-e lec t ron  in tegra ls  for  benzene.  The  2 - G T O  (V) values  
a re  in e r ro r  by  on ly  a few percen t  for the  larges t  integrals ,  bu t  the  er rors  increase  
as the  m a g n i t u d e  of  the  in tegra ls  decreases.  
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The approximation gives only 20 % of the value of integrals of the order of 
10 .4 a.u., which depend upon the overlap of the tails of the component orbitals. 
It is just this region of an STO, which, together with the cusp, is badly fitted by 
GTO's. For methane there are no integrals as small as 10 .4 a.u. but a plot of 
the distribution of integral values for benzene us)ng a 3-GTO (V) basis shows 
them to be evenly distributed about 10 -a a.u. Ka et al. [13] using a single GTO 
approximation show a similar distribution centred about 10-4a.u. Since a 
majority of these underestimated multicentre integrals make positive contributions 
to the total energy and affect the various molecular orbitals differently, it is 
clear how the anomalous mixed basis results arise. The 2-GTO (LS) basis gives 
a better approximation to the small integrals which accounts for the slightly 
better 2-GTO (LS) mixed basis results. 

The mixed basis results for the allyl cation exhibit increasing total energy 
with improving accuracy of the gaussian expansions and hence of the electron 
repulsion integrals. The differences in total energy between the 2- and 3-GTO 
and the 3- and 4-GTO calculations are of the order of 1.0 a.u. and 0.1 a.u. re- 
spectively. This leads us to suppose that the 4-GTO mixed basis calculation is 
within 0.1 a.u. of the total energy that would be obtained by an accurate calculation 
using the atomic SCF basis orbitals. Since the hydrogen is exponent is not 
optimized in the present calculation it is not unreasonable that our value should 
be about 0.4 a.u. above the total energy obtained by Peyerimhoff and Buenker. 
The 4-GTO calculation, to which the variation theorem applies, yields a total 
energy some 0.5 a.u. above the corresponding mixed basis calculation. This in no 
way implies that the mixed basis calculation is better than the all-gaussian one. 
Possibly the latter yields a better description of the molecular wave function at 
some distance from the nuclei whilst the former is more accurate close to the 
atomic centres. Both the 3- and 4-GTO mixed basis calculations and the 4-GTO 
results exhibit the same ordering of the one-electron energy levels as the comparison 
calculation. There is little variation in the results of the Mulliken population 
analyses, and, in the absence of more accurate results we have no grounds for 
prefering one of the 4-GTO calculations to the other. 

The allyl ion is intermediate in size between the benzene molecule and those 
small molecules to which the mixed basis method had previously been applied. 
Thus it could be expected that the errors incurred by consistent under-estimation 
of the small electron repulsion integrals would be less severe in C3H;- than in 
benzene, but that the 2-GTO mixed basis approximation would still yield poor 
results. Column (a) of Table 2 confirms this. The total energy is some 1.2 a.u. 
below the estimated value for the basis set, which is considerably better than the 
2-GTO approximation value for benzene. However, the ordering of the energy 
levels shows a number of deviations from the PB ordering, particularly in the 
arrangement of the ~z-orbitals. The r~-orbital of bl symmetry has been replaced 
by a o--bonding orbital as the highest occupied level and the non-bonding a 2 re- 
orbital is no longer the first virtual orbital. There is a considerable variation in 
the atomic populations when compared with the values in the other calculations 
and the meaningless overlap populations again exhibit the tendency of the 
electrons to keep close to the nuclei because of the under-estimation of the electron 
repulsion terms. 
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Conclusions 

It is obvious that the validity of the mixed method depends upon the accuracy 
of the approximation to the many-centre integrals. In medium or large molecular 
systems small GTO expansions do not approximate these integrals well, so that 
the results are poor  and the usefulness of this kind of mixed basis calculation 
is doubtful. Such integral approximations are bad for two reasons. Firstly, the 
large percentage errors in the approximation to the small many-centre integrals, 
although small in absolute value, have a considerable effect upon the SCF 
calculations because of the frequency of occurrence of this type of integral. 
Secondly, and more importantly, the errors do not occur with a random distribu- 
tion. The consistent underestimation of the small many-centre two-electron 
integrals leads to negative deviations from the total energy and unreliable ordering 
of the molecular orbital levels. 

I t /n ight  be thought that one solution to this problem is to use least-squares 
fits weighted so that the tails of the functions are better described. We have tried 
this method but the technique is cumbersome both with regard to the number of 
fits required and because, for each integral, one must decide upon which fit to 
use. An alternative approach to the evaluation of the two-electron integrals is 
to regard the orbital products as the basic elements, rather than the orbitals, 
and to obtain least-squares expansions of GTO's  for these products. Such a 
procedure has been briefly described for the case of integrals involving s-type 
orbitals [14]. We have successfully extended this method to integrals involving 
p and d orbitals [15]. Column (f) of Table 3 lists some values calculated by this 
method. The four unique orbital products, (1,1), (1,2), (1,3), and (1,4), involving 
the carbon p~ orbitals were expressed as expansions of d-type gaussian functions 
centred along the line joining the atomic centres. F rom the table it is seen that 
all the integrals calculated arc within 0.25 % of the exact value, even though the 
computational effort once the expansions are obtained is less than that for 
evaluating the integrals in the usual manner using 3-GTO expansions, which, as 
indicated in column (b), can give errors as high as 12 %. We believe that this method 
of integral calculation will give satisfactory results in a mixed basis calculation 
and are working along these lines at present. 
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